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SUMMARY

In this paper we study the stability and performance of the quadrilateral finite element Q1–P0 (bili-
near/constant) for the Stokes equations. We set up a framework to show the stability of the element for
a wide range of meshes with macroelement patches. We apply the new theory to show the stability of
Q1–P0 elements on some previously studied meshes and on some newly suggested meshes. Nevertheless
such earlier and newly suggested meshes are not effective in practice, compared to the traditional unstable
meshes for the Q1–P0 element. The new theory leads naturally to a general idea in treating instability
of square Q1–P0 elements by the local stabilization on macroelement patches of larger, but fixed sizes.
The good performance of the traditional Q1–P0 square elements with filtering can be kept in some cases
after the local stabilization. Some numerical tests are provided to support the theory and to show the
performance of stabilized Q1–P0 elements. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Q1–P0 element is a type of quadrilateral element for the Stokes equations, where we use
continuous piecewise ‘bilinear’ approximation for the velocity and discontinuous piecewise con-
stant approximation for the pressure. The simplicity and the ‘well-balanced’ velocity and pressure
spaces of this element make it one of the most popularly used elements in computations for in-
compressible flows. This element is unstable in general, however, it does perform well in practical
computations in terms of the good velocity approximation and a good recovered pressure. There
is a vast amount of literature on the stability and performance of this element. One quotation from
Brezzi and Fortin’s book [1, Section VI.3] well addresses this element: ‘However simple it may
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Figure 1. Earlier proposed method—Bh macroelement patch everywhere.

look, the Q1–P0 element is one of the hardest elements to analyze and many questions are still
open about its properties’. For more history of this element please see [1, 2].

The stability of this element is strongly mesh dependent. Namely, the inf–sup condition (or BB
condition) established in [3, 4] holds on some meshes but fails on others. The most amazing part of
this element is that it always gives good velocity approximation although the inf–sup condition may
not be satisfied. A good pressure can be recovered by filtering out some ‘local spurious’ pressure
modes from the pressure approximation, if necessary. For some meshes the pressure is so good
that no postprocessing is needed. Like all other unstable elements, the more irregular the mesh is,
the better stability the Q1–P0 element gives. Thanks to the work of [5–14] we understand more
about the mechanism of the stability and approximability of the Q1–P0 element. For summary of
the known results on this element please read [1, 2].

Most of the known theoretical results of this element are limited to the rectangular meshes of
some very regular domain. It is known, on the square mesh of the unit square with mesh size
h, that the reduced inf–sup constant is Ch. Therefore, the stability and convergence theorem by
Brezzi [4] cannot been applied directly. However, the element does provide the optimal velocity
approximation and an optimal pressure solution too with possibly filtering out some spurious
pressure modes. As regards the irregular quadrilateral meshes, there are a very few available
theoretical results. Stenberg et al. [11, 15] studied two mesh families for the Q1–P0 element: one
is stable and one unstable (see Figure 1 for the stable mesh). It has been proven that both families
provide an optimal velocity approximation.

In this paper, we devote our effort to the following two issues: first to set a general framework
in which a wide range of stable mesh families of Q1–P0 can be constructed, and secondly, to
investigate the stability mechanism of the element by perturbing square meshes of the unit square.
For the Q1–P0 element, the dimension of the space of the nontrivial spurious pressure modes
(global constant functions are the trivial ones) usually is at most 1, and most of the time is 0
for irregular meshes. For instance, on a square mesh of the unit square, the nontrivial spurious
pressure modes are multiples of the ‘checkerboard’ mode. If the dimension is zero, then the inf–
sup constant is positive—however, this is not enough to guarantee a successful stability analysis.
For example, perturbing only one node of a square mesh would make the discrete pressure space
having no spurious pressure modes while the inf–sup constant is Ch or smaller. Therefore, not
only the spurious pressure modes block our analysis, but also, even more severe, the bad pressure
modes make the inf–sup or reduced inf–sup constant very small. All these bad modes are due to
certain mesh structures. A natural thought is to control the mesh structure such that all these bad
modes have no chance to appear in the pressure space. To this end, we construct some special
submeshes that have the power to eliminate the bad modes if these submeshes are distributed
evenly in arbitrary quadrilateral meshes. Applying this idea gives many stable mesh families for
the Q1–P0 element. An alternative way of eliminating the bad modes in the pressure is to perturb
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Figure 2. Putting one Bh macroelement in each patch of four M2h squares.

Figure 3. Perturbing one centre point out of each patch of 16 squares.

regular meshes or to modify the finite element space slightly. We do not only want to eliminate
the bad modes but also to increase the lower bound of the inf–sup condition.

To be more specific on the above-mentioned two ideas on stabilization, let us see some meshes
for the Q1–P0 element. Instead of using macroelements everywhere as shown in Figure 1, we
can use only one such pattern on a big patch as shown in Figure 2. Figure 2 mesh requires less
computation compared with that on the mesh in Figure 1, but produces better results (see Section 6),
while in both cases the inf–sup condition holds. For the second idea, we perturb only one vertex
on each local patch of regular meshes, shown in Figure 3. Compared to the meshes in Figure 2,
the type of mesh of Figure 3 requires even less computation but would produce better results in
general. Extending this idea of local stabilization further, to achieve the good performance (with
filtering) of the unstable Q1–P0 element on uniform meshes, we then either add a bubble function
on each macroelement patch to the discrete velocity space, shown in Figure 4, or eliminate a free
variable of the discrete pressure space on each patch, shown in Figure 5. By using either method,
we obtain the inf–sup condition (with a positive lower bound) while keeping the good numerical
performance of the unstable element.

We need to emphasize that the term ‘stabilizing the Q1–P0 element’ is completely different
from its usage elsewhere. It is true that the term ‘stabilization’ is meant to modify the weak form
of the divergence-free equation by adding a lower order bilinear form on the pressure space or
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Figure 4. Adding one bubble to the velocity on each patch of 16 squares.

Figure 5. Combining two discrete pressure freedoms (uniform grids for the velocity).

some discrete forms, for example, cf. [1, 2]. In particular, such stabilizations on the Q1–P0 element
were studied in detail by Eguchi [16], Silvester and Kechkar [17], and Hughes and Franca [18].
But in this paper, we modify meshes to get stable Q1–P0 elements when we do ‘stabilization’.

In this paper, the stability analysis of the mixed element is based on the so-called macroelement
technique originated from the work of [5, 15, 19]. There are many versions of the macroelement
technique (cf. [1, 2, 5, 15, 19–21]). We use the two versions developed in [21] in our analysis.

The rest of the paper is organized as follows. In Section 2 we briefly introduce the mixed
formulation of Stokes equations and the definition of the Q1–P0 element. In Section 3 we introduce
two theorems of the macroelement techniques for checking the stability of mixed finite element
methods. In Section 4 we set up a general framework for constructing stable mesh families for the
Q1–P0 element; many stable mesh families are presented and analysed based on the framework
in this section. In Section 5 we study the effect of mesh perturbation on the stability of the Q1–P0
element. Finally, in Section 6 we report some numerical results.

2. THE Q1–P0 ELEMENT FOR STOKES EQUATIONS

In this section we briefly introduce the mixed formulation of Stokes equations, stability or reduced
stability of a mixed finite element, and the definition of the element Q1–P0.
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For the stationary Stokes equations, we solve for (u, p) ∈ (V× P) :=H1
0(�) × L2(�) in the

following system:

−�u + ∇p = f in �

divu= 0 in �

u= 0 on ��

(1)

Here u= (u1, u2) is the velocity of the fluid, p is the pressure, f= ( f1, f2) is the external force,
and � is a polygonal domain in R2. If we let Vh × Ph ⊂V× P denote a finite element space, then
an approximated solution (uh, ph) ∈Vh × Ph of (u, p) is sought from the following discrete weak
formulation of (1):

∫
�

∇uh : ∇v −
∫

�
ph div v=

∫
�
f · v ∀v∈Vh∫

�
q divuh = 0 ∀q ∈ Ph

(2)

Here the parameter h refers to the mesh size.
The properties of the uniqueness and convergence of the finite element solution of (2) are

established in the following theorem, see Babuška [3] and Brezzi [4].
Theorem 2.1
Suppose the finite element spaces Vh and Ph satisfy the inf–sup (or BB, or LBB) condition

�h(Vh, Ph):= inf
0 �=p∈P̂h

sup
0 �=v∈Vh

∫
� p div v

‖v‖1,�‖p‖0,�

then system (2) has a unique solution (uh, ph) ∈ (Vh, P̂h) satisfying

‖u − uh‖1,� + ‖p − ph‖0,��C inf
v∈Vh ,q∈Ph

(‖u − v‖1,� + ‖p − q‖0,�)

where (u, p) is the solution of (1), P̂h = {q ∈ Ph |
∫

�
q = 0}, and C is a positive constant depending

on �h .

The constant �h(Vh, Ph) is called the inf–sup constant. A finite element Vh × Ph is said to be
stable on a mesh family if �h(Vh, Ph) is bounded below by a positive number independent of h;
otherwise the element is said to be unstable. For convenience, we define

Nh =
{
p ∈ Ph

∣∣∣∣
∫

�
p div v= 0 ∀v ∈ Vh

}

Mh = the L2-orthogonal complement of Nh in Ph

(3)
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v

Figure 6. The nodal variables of the Q1–P0 element.

On a mesh family an element Vh × Ph is said to be reduced-stable if dim Nh>1 and Vh × Mh is
stable. The constant �h(Vh, Mh) is called a reduced inf–sup constant. We note that Vh × Ph and
Vh × Mh provide the same velocity approximation.

Let Qh denote a quadrilateral partition of the domain �, where h is the length of the maximum
edges in Qh . For any T ∈Qh , we denote hT (resp. �T ) the longest (resp. shortest) edge of T ,
�i,T , i = 1, 2, 3, 4, the angles of T . A family of quadrilateral meshes is said to satisfy the shape
condition if there exists �>1 and 0<�<1 such that

hT���T , | cos �i,T |��, i = 1, 2, 3, 4 (4)

for all T in the meshes of the family. Let T̂ denote the unit square [0, 1]× [0, 1] with vertices
t̂1, t̂2, t̂3, and t̂4 (counted counterclockwise). For any quadrilateral T ∈Qh with the vertices t1, t2,
t3, and t4 (counterclockwise), there exists exactly one invertible bilinear mapping FT ∈ Q̂1(T̂ )2

(Q̂k(T̂ ) ={∑0�i, j�k ai j x̂
i ŷ j | ai j ∈R}) that maps T̂ onto T such that FT (t̂i ) = ti .

The definition of the Q1–P0 element reads

Vh = {v∈H1
0(�) | v|T = v̂ ◦ F−1

T , v̂∈ Q̂1(T̂ )2, T ∈Qh}
Ph = {q ∈ L2(�) | q|T = q̂ ◦ F−1

T , q̂ ∈ Q̂0(T̂ ), T ∈Qh}
(5)

The degrees of freedom of this element are depicted in Figure 6.

3. THE MACROELEMENT TECHNIQUE

In this section, we briefly introduce two theorems of the macroelement technique for checking the
stability of mixed finite element methods for Stokes equations. They are the so-called macroelement
partition theorem and macroelement covering theorem [20, 21]. In addition, some concepts relevant
to the stability analysis shall be introduced in this section, too. For more detailed discussions or
proofs please see [20, 21].

Given a quadrilateral grid Qh of a polygonal domain �, a macroelement with respect to Qh is a
polygonal region U formed by some quadrilaterals in Qh . A macroelement covering is a covering
of Qh by macroelements. Such a covering is called a macroelement partition if the intersection
of a pair of distinct, nondisjoint macroelements is either a single vertex of Qh or a connected
set consisting of some edges of the quadrilateral mesh. In other words, the difference between
partition and covering is whether a macroelement covering overlaps. We denote a macroelement
partition or covering by Uh . In this paper we assume that all the quadrilateral meshes satisfy the
shape condition (4).
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For a macroelement U we define localizations to U of the finite element spaces Vh , Ph , Nh ,
and Mh as follows:

VU
h = {v∈Vh | supp v⊂U }

PU
h = {�U p | p ∈ Ph}

NU
h =

{
p ∈ PU

h

∣∣∣∣
∫

�
p div v= 0 ∀v∈VU

h

}

MU
h = the L2-orthogonal complement of NU

h in PU
h

(6)

Here �U denotes the characteristic function of U and supp v is the support of v.
The macroelement partition theorem is based on local stabilities over macroelements and the

stability of a special element over the whole domain. It is a useful tool to check the inf–sup
condition of a mixed finite element on meshes formed by certain patterns.

Theorem 3.1 (Macroelement partition theorem)
Let Uh be a macroelement partition of � with respect to some quadrilateral mesh Qh . Let Vh × Ph
be a finite element space defined on Qh , and let

Qh :=
{
q ∈ ∑

U∈Uh

NU
h

∣∣∣∣
∫

�
qr = 0 ∀r ∈ Nh

}

If �(Vh, Qh)>0, then the reduced inf–sup constant �(Vh, Mh) is strictly positive. Moreover, if �
is a positive lower bound for �(Vh, Qh) and �(VU

h , MU
h ) for all U ∈Uh , then �(Vh, Mh) can be

bounded below by a positive constant depending only on �.

In order to present the theory on overlapping macroelement coverings we need to assume an
approximation property of the velocity space Vh (cf. [2, 15, 19] that (7) holds for all quasi-uniform
elements): for each w ∈ H1

0(�) there exists a function wh ∈Vh such that

∑
T∈Qh

h−2
T ‖w − wh‖20,T + ∑

e∈Eh

h−1
e ‖w − wh‖20,e + ‖wh‖21,��C‖w‖21,� (7)

where hT is the diameter of T , he is the length of e, and C is a positive number independent of h.

Given a macroelement covering Uh of �, for any internal edge e∈ o
Eh (the set of all internal edges

of Qh), we define Le to be the number of macroelements in Uh that contain e as one interior edge.

The covering is said to possess the overlap property if Cc:=min{Le | e∈ o
Eh}�1. The quantity Cc

is called the covering constant of Uh . The macroelement covering theorem below is more flexible
and powerful than the partition theorem above in terms of the choice of macroelements. More
quadrilateral meshes can be treated by this theorem.

Theorem 3.2 (Macroelement covering theorem)
Let Uh be a macroelement covering of a quadrilateral mesh Qh satisfying the overlap property. If
Vh satisfies (7) and

�U p ∈ MU
h + R�U ∀p ∈ Mh
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then the reduced inf–sup constant �(Vh, Mh) is strictly positive. Here and later R stands for the set
of constants. Moreover, if for each U ∈Uh the inf–sup constant �(VU

h , MU
h )��>0, then �(Vh, Mh)

can be bounded below by a positive constant depending only on � and the covering constant forUh .

A major issue in applications of the above two theorems is to show that �h(V
U
h , MU

h ) is
bounded below by a positive constant independent of h for all U ∈Uh . This may not be easy
since Uh may contain macroelements with different shapes and structures. To deal with this issue
more effectively, we need the concepts of equivalent macroelements and equivalence classes in
our analysis following [15]. Roughly speaking, two macroelements are said to be equivalent if
there is continuous piecewise linear or bilinear one-to-one mapping that maps one to another. A
equivalence class of macroelements is a set of macroelements in which all macroelements are
equivalent to each other. For convenience, we denote E(U ) the equivalence macroelement class
of the macroelement U . For more detailed definitions and discussions on the concept please read
[15, 19–21].

4. STABILITY ON MACROELEMENT MESHES

In this section, we set up a general framework for constructing stable mesh families for the Q1–P0
element. The main idea is to refine an irregular quadrilateral mesh by some specially designated
substructures such that the stability of the element can be achieved.

Let Qh denote a refinement of a quadrilateral partition M2h of �. The structure of M2h could
be arbitrary. However, the structure of Qh depends on how we refine the mesh M2h into smaller
quadrilaterals. To demonstrate the idea, we assume that each quadrilateral T ∈M2h is refined by
either the submesh Sh or the submesh Bh showed in Figure 7. Here Sh is obtained by connecting
the middle points of the four edges of T , and the structure of Bh is assumed to be unknown but
fixed for the time being. The four middle points of edges of T are certain to be the nodes of Qh .
We denote T B (resp. T S) the refinement of the quadrilateral T ∈M2h by Bh (resp. Sh).

Lemma 4.1
Let M2h be a quadrilateral partition of �. Let Qh be a refinement of M2h where each quadrilateral
of M2h is refined by either macrostructures, Sh or Bh . Using the definitions (3), (5) and (6), if the
following two conditions hold:

1. dim NT B

h = 1 if T ∈M2h is partitioned by Bh ;
2. at least one quadrilateral T ∈M2h is partitioned by Bh ,

then

dim Nh = 1

Figure 7. Two types of refinements used on M2h to obtain Qh .
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∪∪

Figure 8. Two types of macroelements of M2h .

Proof
Let the union of any two quadrilaterals, which share one common edge, ofM2h be a macroelement
ofM2h . The collection of all such macroelements forms a macroelement covering ofM2h , denoted
by O2h . By refining all the macroelements of O2h , we obtain a macroelement covering of Qh ,
denoted by Uh . Let U =W1 ∪W2 ∈O2h be arbitrary, where W1 and W2 are two quadrilaterals of
M2h . Since each of W1 and W2 can be refined by either Bh or Sh , there are four combinations.
For convenience, we let U1 =WS

1 ∪WB
2 , U2 =WB

1 ∪WB
2 , U3 =WB

1 ∪WS
2 , U4 =WS

1 ∪WS
2 . The

macroelements U1 and U2 are depicted in Figure 8.
First we shall show

dim NUi
h = 1, i = 1, 2, 3

Namely, we need to show that if q ∈ NUi
h satisfies∫

Ui

q div v= 0 ∀v∈VUi
h (8)

then q is a piece of constant on the whole Ui , i.e. any q ∈ NUi
h must be constant on these three

types of macroelements.
We consider the first case. Let q ∈ NU1

h be arbitrary. For convenience, we assume, cf. Figure 8,

q|T1 = c1, q|T2 = c2, and q|WB
2

= c (because of dim N Bh
h = 1). Let �1 denote the nodal basis function

corresponding to the node n1 of U1 (see Figure 8). The linear system (8) implies

∫
T1∪T2∪W2

q div

(
r1�1

r2�1

)
= 0 ∀r1, r2 ∈R (9)

We do not know the refinement of the big square WB
2 yet, and neither the shape function �1

inside WB
2 . To compute integral (9) on W2, we have to use then the Green’s formula to convert

the area integral to an integral on the boundary. By doing so, noting that q is piecewise constant,
we conclude that (9) is equivalent to the following two equations:

(c2 − c1)
∫
n2n1

�1 dx = 0

(c1 − c)
∫
n1t3

�1dy + (c2 − c)
∫
t2n1

�1dy = 0

(10)
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Since �1 is linear on each of the three edges in the integral of (10) and it runs from 1 to 0 on each
edge, we get immediately from the first equation that c1 = c2 and then from the second equation
of (10) that c= c1 = c2. This leads to the trivial solution, i.e. q is one constant on the big rectangle
T1 ∪ T2 ∪WB

2 . Repeating the above arguments to the next two small squares T3 and T4 plus the
big rectangle T1 ∪ T2 ∪WB

2 , where we would replace the nodal basis function �1 by �2 at node

n2 (see Figure 8), we conclude that q is a constant on the whole U1 if q ∈ NU1
h . Namely

dim(NU1
h ) = dim(N

WS
1 ∪WB

2
h ) = dim(N

T1∪T2∪T3∪T4∪WB
2

h ) = 1

Next, we shall prove dim NU2
h = 1. Let q ∈ NU2

h be arbitrary. We may assume that q|WB
1

= c1 and

q|WB
2

= c2, since dim N
WB

i
h = 1, for i = 1, 2, see Figure 8. Let �1 denote the nodal basis function

corresponding to the internal node n of U2 in Figure 8. From (8) we have

c1

∫
WB

1

div

(
r1�1

r2�1

)
+ c2

∫
WB

2

div

(
r1�1

r2�1

)
= 0 ∀r1, r2 ∈ R

Again, we do not know the construction of WB
1 and WB

2 yet. So we convert the area integrals
above to boundary integrals as before. If follows that

(c1 − c2)r1

∫
WB

1 ∩WB
2

�1 dy = 0

Therefore, c2 = c1 and dim NU2
h = 1.

The proof of dim NU3
h = 1 is the same as that of dim NU1

h = 1.

Finally, we deal with the macroelement U4. It is true that NU4
h does contain a checkerboard

mode and that dim NU4
h >1. However, we assumed there is at least one T ∈M2h refined by Bh ,

i.e. at least there is one WB which is refined into a T B in Qh . Therefore if q ∈ Nh , then q is a
constant on such a region T B by the assumption 1 in the lemma. By the analysis above for U1
and U2, we know that q assumes the same constant value on the (four, or less at the boundary)
neighbouring M2h squares of the WB (T B is a refinement of this WB). Such a propagation would
not stop until we reach the conclusion that q is a constant on the whole domain �. That is

dim Nh = 1 �

For simplicity, we introduce the following notations. For any vertex s ∈M2h , we define Gs the
polygonal region formed by the union of all M2h quadrilaterals on which s is a vertex. For any
given vertex v ∈M2h , we recursively define Rv(k), the kth set of vertices, and Dv(k), the level k
macroelement of M2h , as follows:

Rv(0)= {v}
Dv(0)=Gv
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Rv(k) ={all vertices of Dv(k − 1)}, k = 1, 2, . . .

Dv(k) = ⋃
s∈Rv(k)

Gs, k = 1, 2, . . .

Theorem 4.1
Let a family of quadrilateral meshes M2h , h>0 on � satisfy the shape condition (4). Let Qh be a
mesh of quadrilaterals refined from M2h by either Bh or Sh . If the following two conditions hold:

(a1) there is a fixed integer k>0 such that for each vertex v of M2h at least one quadrilateral
contained in Dv(k) is partitioned by Bh ;

(a2) denoting by E(Bh) the macroelement equivalence class of Bh

dim NU
h = 1 ∀U ∈ E(Bh)

then the Q1–P0 is stable on the family of meshes Qh , h>0, and the inf–sup constant �h is bounded
below by a positive number depending only on the structure of Bh , k, �, and �.

Proof
To prove this theorem we shall apply the macroelement covering theorem (Theorem 3.2). To this
end, we need to check the following five conditions:

(C1) dim Nh = 1;
(C2) approximation property (7) holds;
(C3) there exists a macroelement covering Uh of Qh satisfying the overlap property;
(C4) dim NU

h = 1 for all macroelement U ∈Uh ;
(C5) there exists �>0 independent of h such that

�h(V
U
h , MU

h )�� ∀U ∈Uh

Clearly, (C1) holds because of Lemma 4.1 and the assumption (a1) of the theorem.
As regards (C2), it holds for the finite element space Vh defined in (4), see [2, 19, 22, 23].
By the definition, Dv(k) is a macroelement of M2h . If we set

O2h ={Dv(k) | for all vertices v of M2h}

then it is a macroelement covering of M2h satisfying the overlap property. Any macroelement
U ∈O2h is also formed by some quadrilaterals of Qh , therefore U is a macroelement of Qh . Thus,
associated with Oh we have a macroelement covering Uh of Qh satisfying the overlap property.
According to the definitions of O2h and Uh , by the assumption (a1), any macroelement U ∈Uh
(refinement of some macroelement of O2h) contains at least one submesh Bh . Therefore, applying
Lemma 4.1, we get

dim NU
h = 1

By the shape condition (4), the definitions of O2h and Uh , the definitions of Sh and Bh , the
number of different equivalence macroelement classes of Uh is bounded and dependent on k, �,
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Figure 9. A macroelement formed by three quadrilaterals.

and �. According to Lemma 3.1 in [15], we conclude that (C5) holds with � dependent on k, �,
�, and the structure of Bh .

By applying the macroelement covering theorem, we complete the proof. �

Remark 4.1
The condition (a1) of Theorem 4.1 means that the mesh structure Bh is ‘uniformly’ distributed in
the mesh Qh . If the mesh Qh is quasi-uniform, condition (a1) is equivalent to that for each vertex
of Qh , there is at least one T B , T ∈M2h , contained inside the circle centred at the vertex with a
radius kh, for some integer k>0.

Remark 4.2
The structure of Bh may be allowed to vary. Let B(1)

h , . . . , B(m)
h be substructures such that

dim NU
h = 1 if U = T B(i)

, T ∈M2h , 1�i�m. Lemma 4.1 still holds if each quadrilateral of M2h

is partitioned by one of Sh , B
(1)
h , . . . , B(m)

h . Similarly, Theorem 4.1 holds if Bh is replaced by

B(1)
h , . . . , B(m)

h , which satisfy condition (a2), provided m is fixed.

We next consider a special type of macroelement. It is a combination of three quadrilaterals
meeting at an interior vertex. The proof of next lemma can be done by a simple calculation or by
referencing, for example, [15, 24].
Lemma 4.2
If a macroelement W = T1 ∪ T2 ∪ T3, see Figure 9, then

dim NU
h = 1 ∀U ∈ E(W )

In the rest of this section, we present some types of Bh satisfying the conditions in Theorem 4.1.
The first two examples are known and analysed in [15, 24]. The analysis of all five Bh is covered
by Lemma 4.2. We note that in the construction of Bh , each one must use precisely the vertices
and the four mid-edge points as its boundary nodes. We remark that the resulting meshes with the
help of some Bh patches would give stable Q1–P0 mixed element spaces, but the approximation
of the resulting spaces, while we have more unknowns here, may be worse than that of the spaces
on the uniform square meshes, though the latter does not have the inf–sup condition. This is to be
illustrated by numerical examples.

Example 1 (Stenberg [15])
Bh is formed by five quadrilaterals, see the first picture of Figure 10. By Lemma 4.2, it is trivial
to see dim NU

h = 1 for all U ∈ E(Bh). Stenberg [15] proved the Q1–P0 element is stable if each
quadrilateral of M2h is partitioned by Bh—that is the special case when k = 0 in Theorem 4.1.
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Figure 10. Two known types of Bh patches.

Figure 11. Three new types of Bh patches.

Example 2 (Le Tallec and Ruas [24])
Bh has the mesh structure shown in the second picture of Figure 10. Combination of Lemma 4.2
and the proof of Theorem 4.1 gives dim NU

h = 1 for all U ∈ E(Bh).

Examples 3–5
We list three more choices of Bh in Figure 11. Each of these satisfies the second condition of
Theorem 4.1. Again, from the points of implementation and the approximation property, we would
list five types of Bh from the best to worst as Examples 1–5.

5. PERTURBATION OF THE SQUARE MESHES

In this section, we study the influence of perturbations of square meshes on the stability of the
Q1–P0 element. To simplify the exposition, we only discuss the perturbation of square meshes of
the unit square. For such square meshes, it is well known that dim Nh = 2, the nontrivial spurious
pressure modes are multiples of the checkerboard mode, and the reduced inf–sup constant is Ch.
In this section, we will show that dim Nh = 1 if one interior vertex of the square mesh is perturbed
away from its original position. Furthermore, we show a stable family obtained by perturbing the
square meshes of the unit square. We also generalize the idea by introducing two unusual Q1–P0
elements, one with an additional bubble velocity function on each macroelement patch, and another
one with a reduction of a pressure function on each macroelement patch.

Lemma 5.1
Let Qh denote a square mesh of the unit square with mesh size h� 1

4 . If an interior vertex of Qh
is perturbed away from its original position, then the Q1–P0 element has no nontrivial spurious
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Figure 12. Perturbing one vertex on a macroelement U and the NU
h .

pressure mode in Nh . Namely

dim Nh = 1

Proof
We consider only the case that the lower-left corner interior vertex being moved, as shown in
Figure 12. The proof for the cases that anyone of the other vertices being moved is similar.

Let p be in NU
h , for the U being the 16 squares shown in Figure 12. Then we have∫

U
p div v= 0 ∀v∈VU

h (11)

In particular, we can use, in (11), the test functions

v=
(

�2

0

)
and v=

(
0

�2

)

where �2 is, as before, the Q1 nodal basis function at node n2 in Figure 12. By (11), we get, after
subtracting a global constant, that

c2 = −sc1

c3 = −tc1

c4 = (s + t − 1)c1

Here ci denotes the constant value of the pressure function q on some small square, as depicted
in Figure 12. We note that the positive constants s and t above may be equal if the vertex n1 is
moved along the diagonal line n2n3. But when the vertex n1 is perturbed

t �= 1 and s �= 1 (12)

Next, we choose the test function v= (�3, 0) and v= (0, �3) in (11). This would lead to the
following equations:

c6 = −c5 = −(s + t − 1)c1

c7 = −c5 = −(s + t − 1)c1

c8 = −c7 = (s + t − 1)c1
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Mesh A Mesh B Mesh C

Figure 13. Square mesh, one vertex perturbation, perturbed macroelements.

Finally, let v= (�4, 0) and v= (0,�4) in (11), see Figure 12. A simple calculation would tell us
that

c6 = −c5 =−(s + t − 1)c1 (again)
c3 = −c6 = (s + t − 1)c1
c3 = −c2 = sc1

The last two equations show the following two possibilities:

either t = 1 or c1 = 0

From (12), we conclude that c1 = 0. Therefore, as all ci = 0 and p≡ 0 (after subtracting a global
constant). So dim NU

h = 1.
Let Uh be the set of all the 4× 4 squares of Qh . Clearly, Uh is a macroelement covering of Qh ,

and each macroelement of Uh is overlapped with some other macroelements. Since dim NU
h = 1

while one interior vertex of U is perturbed, the overlap property of the macroelements of Uh leads
to dim Nh = 1. Therefore, Nh consists of global constant functions only. �

Although the inf–sup constant is no longer zero if we perturb only one interior vertex of the
square mesh Qh (see Mesh B in Figure 13), it is by no means bounded below by a positive number
independent of h. As a matter of fact, the inf–sup constant goes to zero as the mesh size h goes
to zero. This is caused by the bad pressure modes in the pressure space. However, by the general
theory established in the last section, we can bound the inf–sup constant from below, independent
of h, if we perturb one interior vertex of each macroelement of a fixed size. The idea is to partition
the unit square into equal squares, then partition each square into 16 quadrilaterals exactly the
same way shown by the first picture in Figure 12. The resulting partition of the unit square is
denoted by Qh , see the second picture in Figure 3. By Lemma 5.1, Theorems 3.1 and 4.1, the
Q1–P0 element is stable on such a mesh family. The comments here are to be confirmed in the
section of numerical test.
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6. NUMERICAL TESTS

In this section, we will first continue our investigation on the stability of the Q1–P0 element on
perturbed meshes of the unit square. We investigate the (reduced) inf–sup condition number of
three types of quadrilateral meshes, shown in Figure 13. Secondly, we compare the numerical
results for various stabilization methods, proposed by others before and newly here.

As we proved in the previous section, perturbation of any one interior vertex of the square
mesh can eliminate the checkerboard mode. In the following tests, we first move (only one) the
vertex (h, h) to the point (1.2h, 1.2h) (see Mesh B in Figure 13). From the computational results
listed in Table I (Mesh A), we clearly see that the inf–sup constant �̄h =Ch, i.e. 	 = 1 (where 	
is defined as �̄h =Ch	 or �h(Vh, Mh) =Ch	). Here �h and �̄h are the second (first one is zero)
and the third (first two are zero) smallest eigenvalues of M−1

h BT
h A−1

h Bh , respectively, where the
three matrices are the mass matrix for pressure, the vector Laplacian matrix for velocity, and the
(divuh, ph) matrix. This is a well-known result for the uniform meshes that even after filtering out
the checkerboard mode pressure, the inf–sup constant still goes to zero. In Table I (Mesh B), after
we perturb only one vertex, the checkerboard mode pressure is no longer in Nh . Nevertheless, the
mode is turned into a bad pressure mode which makes the inf–sup constant close to zero. This
is shown in Table I that the value of �h of the Mesh B is much smaller than the reduced inf–sup
constant �h(Vh, Mh) of the square mesh of the same mesh size.

Therefore, as we discussed in the last section, it is not enough to get dim Nh = 1 by perturbing
one vertex. We need to perturb one vertex on each patch of macroelement covering. This is
illustrated in Mesh C of Figure 13. Here, we make sure that, among every 16 squares, one internal
vertex is moved. Therefore, for h between 1

5 and 1
8 , there are four perturbed internal vertices.

Table I. Inf–sup constants for three types of meshes in Figure 13.

Mesh A Mesh B Mesh C

h �̄h 	 �h 	 �h

1
4 0.3676 0.0227 0.0227
1
5 0.3149 0.6929 0.0189 0.8174 0.0783
1
6 0.2740 0.7632 0.0158 0.9947 0.0621
1
7 0.2418 0.8125 0.0135 1.0101 0.0458
1
8 0.2159 0.8476 0.0118 1.0143 0.0307
1
9 0.1948 0.8725 0.0105 1.0122 0.0591
1
10 0.1774 0.8910 0.0094 1.0125 0.0542
1
11 0.1627 0.9052 0.0085 1.0110 0.0454
1
12 0.1502 0.9163 0.0078 1.0111 0.0415
1
13 0.1395 0.9252 0.0072 1.0101 0.0383
1
14 0.1302 0.9325 0.0067 1.0102 0.0320
1
15 0.1220 0.9386 0.0062 1.0096 0.0305
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 0.17E-02
 0.16E-02
 0.15E-02
 0.14E-02
 0.13E-02
 0.12E-02
 0.11E-02
 0.10E-02
 0.93E-03
 0.84E-03
 0.74E-03
 0.64E-03
 0.54E-03
 0.44E-03
 0.34E-03
 0.25E-03
 0.15E-03
 0.49E-04
-0.49E-04
-0.15E-03
-0.25E-03
-0.34E-03
-0.44E-03
-0.54E-03
-0.64E-03
-0.74E-03
-0.84E-03
-0.93E-03
-0.10E-02
-0.11E-02
-0.12E-02
-0.13E-02
-0.14E-02
-0.15E-02
-0.16E-02
-0.17E-02
-0.18E-02
-0.19E-02
-0.20E-02

-0.24E-02

Figure 14. Error of component 1 of uh on the Stenberg mesh [15].

Nine internal vertices are moved for h between 1
9 and 1

15 . Clearly, the inf–sup constant is bounded
below now, independent of h, as shown in Table I (Mesh C).

Finally, to compare various methods, numerically we solve Equation (1) where the exact solu-
tion is

u= curl g, p=−gxx , g= 10(x − x2)2(y − y2)2

defined on the unit square (0, 1) × (0, 1). Here we know the exact solution that we can find the error
between numerical solution and the exact solution easily. We first use the stable meshes as depicted
in Figure 1, i.e. every M2h squares are refined into five quadrilaterals (called a Uh macroelement).
The Q1–P0 element is stable on such a mesh. This is analyzed by Stenberg [15] and we call such a
mesh Stenberg mesh. The first component of error u−uh is plotted in Figure 14. We will compare
this error with that of newly proposed method that we use only one such 5-quadrilateral Bh on a
large patch of M2h while using the standard refinement Sh on the rest M2h squares, as shown in
Figure 2. We list the several norms of errors and the orders of convergence, when using Figure 2
meshes, in the right part of Table II. Here out of eight M2h squares one is refined into Bh while
the other seven refined into Sh (see the bottom mesh in Figure 15).

We note that the newly proposed mesh, the Figure 2 mesh, provides better numerical solution
with much less computation cost. To be specific, comparing the two errors in Figures 14 and 15 (by
reading the bar graphs on the right of two figures), we can see that not only the peak error of the
new method is much smaller but also everywhere else the new error is smaller. In this computation
(please see the grids on the bottom of Figures 14 and 15), the number of nodal variables for the
discrete velocity space is 578 for the Stenberg mesh, while it is only 466 for the Figure 2 mesh.
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Table II. Convergence of Q1–P0 on uniform or stabilized meshes.

Figure 13 Mesh A Figure 2 Mesh

h ‖eu‖1,� ‖ep‖0,� |eu|l∞ |ep|l∞ ‖eu‖1,� ‖ep‖0,� |eu|l∞ |ep|l∞
1
4 0.1486 0.1119 0.00884 0.2050 0.1484 0.1124 0.0282 0.3586
1
8 0.0403 0.0249 0.00201 0.0571 0.0406 0.0366 0.0063 0.1523
1
16 0.0102 0.0049 0.00053 0.0194 0.0102 0.0136 0.0017 0.0813

� (O(h�)) 1.9 2.2 2.0 1.7 1.9 1.5 2.0 1.0

 0.12E-02

 0.10E-02
 0.95E-03
 0.89E-03
 0.83E-03
 0.77E-03
 0.71E-03
 0.65E-03
 0.59E-03
 0.53E-03
 0.47E-03
 0.40E-03
 0.34E-03
 0.28E-03
 0.22E-03
 0.16E-03
 0.10E-03
 0.39E-04
-0.22E-04
-0.82E-04
-0.14E-03
-0.20E-03
-0.26E-03
-0.33E-03
-0.39E-03
-0.45E-03
-0.51E-03
-0.57E-03
-0.63E-03
-0.69E-03
-0.75E-03
-0.81E-03
-0.87E-03
-0.93E-03
-0.99E-03
-0.11E-02

-0.12E-02

-0.13E-02

-0.18E-02

Figure 15. Component 1 of eu on a selectively stabilized mesh.

However, the maximal nodal error |u − uh |l∞ for the former is 0.0024, much bigger than that of
latter, 0.00178.

Our third test is to check our second idea, perturbing one vertex of each patch of squares, shown
in Figure 3. The error is plotted in Figure 16. Again, we perturb one internal vertex of a M2h
square out of every eightM2h squares. We note that, compared to the second numerical test above,
the number of nodal variables for the velocity is reduced further from 466 to 450. However, the
maximal nodal error |u − uh |l∞ is even smaller, from 0.00178 to 0.00088.

The next numerical test is to check the uniform grids, as depicted in Figure 13 Mesh A. In
this case, the resulting linear system is singular and we have to filter out the checkerboard mode
pressure. The error of the component one of the velocity is plotted in Figure 17. The error is
smooth, and smaller than that of three earlier tests. The maximal nodal error |u−uh |l∞ is 0.00053
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Figure 16. Component 1 of eu on a selectively perturbed mesh.
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Figure 17. Component 1 of eu on the uniform mesh.
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Table III. Inf–sup constants and accuracy of Q1–P0 and the stabilizations.

Figure 13 Mesh A Figure 5 Mesh Figure 4 Mesh

h ‖eu‖∞ ‖ep‖∞ �̄h ‖eu‖∞ ‖ep‖∞ �h ‖eu‖∞ ‖ep‖∞ �h

1
4 0.00884 0.08026 0.13513 0.00884 0.21139 0.02408 0.00884 0.09411 0.01438
1
8 0.00201 0.03253 0.04661 0.00754 0.22433 0.04086 0.00295 0.09705 0.01777
1
16 0.00053 0.01060 0.01318 0.00145 0.16360 0.04477 0.00077 0.07171 0.01899
1
32 0.00013 0.00298 0.00346 0.00025 0.10034 0.04507 0.00017 0.04981 0.02322

in this case. We list the convergence results for the uniform meshes in the left part of Table II. At
the end, we test the methods shown in Figures 4 and 5. For both cases, we obtain graphs almost
identical to Figure 17, and obtain errors very close to those listed in Table II for the uniform
meshes. We omit the details here. Further study and discussion on these two methods, and their
generalizations, would appear somewhere else. We compare the inf–sup constants and the accuracy
of the two methods to those of the standard element, by Table III.
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3. Babuška I. The finite element method with Lagrangian multipliers. Numerical Mathematics 1973; 20:179–192.
4. Brezzi F. On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian

multipliers. RAIRO 1974; 8:129–151.
5. Boland JM, Nicolaides RA. Stability of finite elements under divergence constraints. SIAM Journal on Numerical

Analysis 1983; 20:722–731.
6. Boland JM, Nicolaides RA. Stable and semistable low order finite elements for viscous flows. SIAM Journal on

Numerical Analysis 1985; 22:474–492.
7. Griffiths D, Silvester D. Unstable modes of the Q1–P0 element. Numerical Analysis Report No. 257, Department

of Mathematics, University of Manchester, 1994.
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11. Pitkäranta J, Stenberg R. Analysis of some mixed finite element methods for plane elasticity equations.Mathematics

of Computation 1983; 41:399–423.
12. Oden JT, Jacquotte O. Stability of some mixed finite element methods for Stokesian flows. Computational

Methods in Applied Mechanics and Engineering 1984; 43:231–247.
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